101 research outputs found

    Construction of near-optimal vertex clique covering for real-world networks

    Get PDF
    We propose a method based on combining a constructive and a bounding heuristic to solve the vertex clique covering problem (CCP), where the aim is to partition the vertices of a graph into the smallest number of classes, which induce cliques. Searching for the solution to CCP is highly motivated by analysis of social and other real-world networks, applications in graph mining, as well as by the fact that CCP is one of the classical NP-hard problems. Combining the construction and the bounding heuristic helped us not only to find high-quality clique coverings but also to determine that in the domain of real-world networks, many of the obtained solutions are optimal, while the rest of them are near-optimal. In addition, the method has a polynomial time complexity and shows much promise for its practical use. Experimental results are presented for a fairly representative benchmark of real-world data. Our test graphs include extracts of web-based social networks, including some very large ones, several well-known graphs from network science, as well as coappearance networks of literary works' characters from the DIMACS graph coloring benchmark. We also present results for synthetic pseudorandom graphs structured according to the Erdös-Renyi model and Leighton's model

    On combinatorial optimisation in analysis of protein-protein interaction and protein folding networks

    Get PDF
    Abstract: Protein-protein interaction networks and protein folding networks represent prominent research topics at the intersection of bioinformatics and network science. In this paper, we present a study of these networks from combinatorial optimisation point of view. Using a combination of classical heuristics and stochastic optimisation techniques, we were able to identify several interesting combinatorial properties of biological networks of the COSIN project. We obtained optimal or near-optimal solutions to maximum clique and chromatic number problems for these networks. We also explore patterns of both non-overlapping and overlapping cliques in these networks. Optimal or near-optimal solutions to partitioning of these networks into non-overlapping cliques and to maximum independent set problem were discovered. Maximal cliques are explored by enumerative techniques. Domination in these networks is briefly studied, too. Applications and extensions of our findings are discussed

    Partitioning networks into cliques: a randomized heuristic approach

    Get PDF
    In the context of community detection in social networks, the term community can be grounded in the strict way that simply everybody should know each other within the community. We consider the corresponding community detection problem. We search for a partitioning of a network into the minimum number of non-overlapping cliques, such that the cliques cover all vertices. This problem is called the clique covering problem (CCP) and is one of the classical NP-hard problems. For CCP, we propose a randomized heuristic approach. To construct a high quality solution to CCP, we present an iterated greedy (IG) algorithm. IG can also be combined with a heuristic used to determine how far the algorithm is from the optimum in the worst case. Randomized local search (RLS) for maximum independent set was proposed to find such a bound. The experimental results of IG and the bounds obtained by RLS indicate that IG is a very suitable technique for solving CCP in real-world graphs. In addition, we summarize our basic rigorous results, which were developed for analysis of IG and understanding of its behavior on several relevant graph classes

    An Order-based Algorithm for Minimum Dominating Set with Application in Graph Mining

    Full text link
    Dominating set is a set of vertices of a graph such that all other vertices have a neighbour in the dominating set. We propose a new order-based randomised local search (RLSo_o) algorithm to solve minimum dominating set problem in large graphs. Experimental evaluation is presented for multiple types of problem instances. These instances include unit disk graphs, which represent a model of wireless networks, random scale-free networks, as well as samples from two social networks and real-world graphs studied in network science. Our experiments indicate that RLSo_o performs better than both a classical greedy approximation algorithm and two metaheuristic algorithms based on ant colony optimisation and local search. The order-based algorithm is able to find small dominating sets for graphs with tens of thousands of vertices. In addition, we propose a multi-start variant of RLSo_o that is suitable for solving the minimum weight dominating set problem. The application of RLSo_o in graph mining is also briefly demonstrated

    Construction of Near-Optimal Vertex Clique Covering for Real-World Networks

    Get PDF
    We propose a method based on combining a constructive and a bounding heuristic to solve the vertex clique covering problem (CCP), where the aim is to partition the vertices of a graph into the smallest number of classes, which induce cliques. Searching for the solution to CCP is highly motivated by analysis of social and other real-world networks, applications in graph mining, as well as by the fact that CCP is one of the classical NP-hard problems. Combining the construction and the bounding heuristic helped us not only to find high-quality clique coverings but also to determine that in the domain of real-world networks, many of the obtained solutions are optimal, while the rest of them are near-optimal. In addition, the method has a polynomial time complexity and shows much promise for its practical use. Experimental results are presented for a fairly representative benchmark of real-world data. Our test graphs include extracts of web-based social networks, including some very large ones, several well-known graphs from network science, as well as coappearance networks of literary works' characters from the DIMACS graph coloring benchmark. We also present results for synthetic pseudorandom graphs structured according to the Erdös-Renyi model and Leighton's model

    Instance Scale, Numerical Properties and Design of Metaheuristics: A Study for the Facility Location Problem

    Get PDF
    Metaheuristics are known to be strong in solving large-scale instances of computationally hard problems. However, their efficiency still needs exploration in the context of instance structure, scale and numerical properties for many of these problems. In this paper, we present an in-depth computational study of two local search metaheuristics for the classical uncapacitated facility location problem. We investigate four problem instance models, studied for the same problem size, for which the two metaheuristics exhibit intriguing and contrasting behaviours. The metaheuristics explored include a local search (LS) algorithm that chooses the best moves in the current neighbourhood, while a randomised local search (RLS) algorithm chooses the first move that does not lead to a worsening. The experimental results indicate that the right choice between these two algorithms depends heavily on the distribution of coefficients within the problem instance. This is also put further into context by finding optimal or near-optimal solutions using a mixed-integer linear programming problem solver. Since the facility location problem is a relatively simple example of a choice-and-assignment problem, similar phenomena are likely to be discovered in a number of other, possibly more complex computational problems in science and engineering

    Computational methods for finding long simple cycles in complex networks

    Get PDF
    © 2017 Elsevier B.V. Detection of long simple cycles in real-world complex networks finds many applications in layout algorithms, information flow modelling, as well as in bioinformatics. In this paper, we propose two computational methods for finding long cycles in real-world networks. The first method is an exact approach based on our own integer linear programming formulation of the problem and a data mining pipeline. This pipeline ensures that the problem is solved as a sequence of integer linear programs. The second method is a multi-start local search heuristic, which combines an initial construction of a long cycle using depth-first search with four different perturbation operators. Our experimental results are presented for social network samples, graphs studied in the network science field, graphs from DIMACS series, and protein-protein interaction networks. These results show that our formulation leads to a significantly more efficient exact approach to solve the problem than a previous formulation. For 14 out of 22 networks, we have found the optimal solutions. The potential of heuristics in this problem is also demonstrated, especially in the context of large-scale problem instances

    Analysis of Iterated Greedy Heuristic for Vertex Clique Covering

    Get PDF
    The aim of the vertex clique covering problem (CCP) is to cover the vertices of a graph with as few cliques as possible. We analyse the iterated greedy (IG) algorithm for CCP, which was previously shown to provide strong empirical results for real-world networks. It is demonstrated how the techniques of analysis for randomised search heuristics can be applied to IG, and several practically relevant results are obtained. We show that for triangle-free graphs, IG solves CCP optimally in expected polynomial time. Secondly, we show that IG finds the optimum for CCP in a specific case of sparse random graphs in expected polynomial time with high probability. For Barabási-Albert model of scale-free networks, which is a canonical model explaining the growth of social, biological or computer networks, we obtain that IG obtains an asymptotically optimal approximation in polynomial time in expectation. Last but not least, we propose a slightly modified variant of IG, which guarantees expected polynomial-time convergence to the optimum for graphs with non-overlapping triangles
    • …
    corecore